Step of Proof: nth_tl_is_fseg
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
nth
tl
is
fseg
:
1.
T
: Type
2.
L1
:
T
List
3.
L2
:
T
List
4.
L
:
T
List
5.
L2
= (
L
@
L1
)
n
:{0..(||
L2
||+1)
}. (
L1
= nth_tl(
n
;
L2
))
latex
by
InteriorProof
((((((((HypSubst (-1) 0)
CollapseTHENM (RWO "length_append" 0))
)
CollapseTHENM (RWO
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
CollapseTHENM (RWO
)) (first_tok SupInf:t) inil_term)))
)
CollapseTHEN (InstConcl [||
L
||]))
)
CollapseTHEN (InstC
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n
CollapseTHEN (Inst
)) (first_tok SupInf:t) inil_term)))
latex
C
1
:
C1:
L1
= nth_tl(||
L
||;
L
@
L1
)
C
.
Definitions
||
as
||
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
#$n
,
S
T
,
|
g
|
,
i
j
<
k
,
P
&
Q
,
x
:
A
B
(
x
)
,
,
T
,
True
,
A
,
False
,
P
Q
,
a
<
b
,
n
+
m
,
i
j
,
A
B
,
,
nth_tl(
n
;
as
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
{
x
:
A
|
B
(
x
)}
,
t
T
,
as
@
bs
,
{
i
..
j
}
,
s
=
t
,
Type
,
type
List
Lemmas
iff
wf
,
rev
implies
wf
,
squash
wf
,
true
wf
,
add
functionality
wrt
eq
,
length
append
,
append
wf
,
int
seg
wf
,
length
wf
nat
,
nat
wf
,
le
wf
,
non
neg
length
,
length
wf1
,
nth
tl
wf
origin